딥노이드, 대한암학회서 최우수 포스터상 수상

기자정보, 기사등록일
이효정 기자
입력 2024-06-21 08:57
    도구모음
  • AI 기사요약
  • * AI기술로 자동 요약된 내용입니다. 전체 맥락과 내용을 이해하기 위해서는 기사 본문 전체를 보시길 권장합니다

    의료 인공지능 전문기업 딥노이드가 제50차 대한암학회 학술대회(KCA 2024)에서 최우수 포스터상(Best Poster Award)을 수상했다고 21일 밝혔다.

    F1 Score는 머신러닝 모델의 성능을 평가하는 지표 중 하나로, 높을수록 예측이 정확하다고 판단한다.

    이번 연구에 참여한 딥노이드 AI연구소 윤홍준 팀장은 "전체 조직 슬라이드 라벨만으로도 유의미한 성과를 달성할 수 있음을 입증했다"며 "이러한 결과는 실제 임상 현장에서 사용했을 때, 신세포암 진단의 정확성과 효율성을 개선하는 데 도움을 줄 수 있을 것"이라고 말했다.

  • 글자크기 설정
정대기 연구원
딥노이드가 제50차 대한암학회 학술대회(KCA 2024)에서 최우수 포스터상(Best Poster Award)을 수상했다. [사진=딥노이드]
 
의료 인공지능 전문기업 딥노이드가 제50차 대한암학회 학술대회(KCA 2024)에서 최우수 포스터상(Best Poster Award)을 수상했다고 21일 밝혔다.

딥노이드가 발표한 포스터는 다중 인스턴스 학습(MIL; Multiple Instance Learning)에 기반한 신세포암종(RCC)의 유형 분류 방법에 대한 연구다. 본 연구사업의 주관기관인 가톨릭대학교 의정부성모병원을 비롯해 10개 기관에서 수집한 7000장 이상의 전체 슬라이드 이미지(WSIs)를 활용해 학습됐다. 이는 현재까지 국가 단위 데이터 세트로는 가장 큰 규모라는 게 회사 측의 설명이다.

본 모델을 통해 신세포암종을 분류할 경우 정확도(ACC)는 97.0%, 수치가 클수록 분류 성능을 높게 평가하는 AUC는 0.987, F1 Score는 97.0%의 성능을 보였다. F1 Score는 머신러닝 모델의 성능을 평가하는 지표 중 하나로, 높을수록 예측이 정확하다고 판단한다.

이번 연구에 참여한 딥노이드 AI연구소 윤홍준 팀장은 “전체 조직 슬라이드 라벨만으로도 유의미한 성과를 달성할 수 있음을 입증했다”며 “이러한 결과는 실제 임상 현장에서 사용했을 때, 신세포암 진단의 정확성과 효율성을 개선하는 데 도움을 줄 수 있을 것”이라고 말했다.

©'5개국어 글로벌 경제신문' 아주경제. 무단전재·재배포 금지

컴패션_PC
0개의 댓글
0 / 300

로그인 후 댓글작성이 가능합니다.
로그인 하시겠습니까?

닫기

댓글을 삭제 하시겠습니까?

닫기

이미 참여하셨습니다.

닫기

이미 신고 접수한 게시물입니다.

닫기
신고사유
0 / 100
닫기

신고접수가 완료되었습니다. 담당자가 확인후 신속히 처리하도록 하겠습니다.

닫기

차단해제 하시겠습니까?

닫기

사용자 차단 시 현재 사용자의 게시물을 보실 수 없습니다.

닫기
2024_5대궁궐트레킹
실시간 인기
기사 이미지 확대 보기
닫기